
Detecting Data and Schema Changes in Scientific Documents

Nabil Adam, Igg Adiwijaya
CIMIC - Rutgers University

180 Univ. Ave, Newark, NJ 07102
adam@adam.rutgers.edu,
gusadi@cimic.rutgers.edu

Terence Critchlow, Ron Musick
Lawrence Livermore National Laboratory

7000 East Ave. Livermore, CA 94550
critchlow@llnl.gov,
rmusick@llnl.gov

Abstract

Data stored in a data warehouse must be kept consis-
tent and up-to-date with respect to the underlying informa-
tion sources. By providing the capability to identify, catego-
rize and detect changes in these sources, only the modified
data needs to be transfered and entered into the warehouse.
Another alternative, periodically reloading from scratch, is
obviously inefficient. When the schema of an information
source changes, all components that interact with, or make
use of, data originating from that source must be updated
to conform. The change detection problem is the problem
of detecting data and schema changes by comparing two
versions of the same semi-structured document. In this pa-
per, we present an approach to detecting data and schema
changes for scientific documents. Scientific data is of partic-
ular interest because it is normally stored as semi-structured
document, and suffers frequent schema updates. This pa-
per demonstrates the use of graph to represent scientific
documents in particular, and semi-structured documents in
general as well as their schema. It also demonstrates an
approach to efficiently detect data and schema changes by
merging the detection with parsing the document.

1. Introduction

Detecting change is an important task for many applica-
tions, in particular data warehousing. A data warehouse in-
tegrates data from heterogeneous, autonomous data sources
into a consistent, central repository. Since the warehouse
needs to be kept consistent and up-to-date, changes to the
underlying sources must be periodically extracted and prop-
agated to the warehouse. While this could be done by regu-
larly refreshing the entire warehouse, a better alternative is
to detect and propagate only the changes since this requires
less computer resources and is within the required time con-
straints – typically one business night.

Before data can be loaded, the source schema must be

obtained and incorporated into the components supporting
the warehouse, such as the wrapper and mediator [6]. When
the schema evolves, these components must be modified
as well. Currently, reflecting source schema changes in
the warehouse requires obtaining the updated schema from
the source and manually modifying the warehouse compo-
nents to conform to it. While a manual approach to de-
tecting schema changes may be acceptable in certain envi-
ronments, it is too cumbersome and inefficient in situations
where schema changes are frequent, such as scientific envi-
ronments. An approach to automatically detecting schema
changes and semi-automatically modifying the warehouse
components accordingly is needed. The more we can auto-
mate this process, the more useful it will be. Furthermore,
such an approach would make adding new sources to the
warehouse easier as well. However, since the schema is usu-
ally not explicitly specified in a free-form document, there
are significant technical challenges to overcome if we are to
reach any level of automation.

In this paper, we present our approach to detecting both
data and schema changes in scientific data sources, with a fo-
cus on genomic sources. In this environment, data is usually
provided as semi-structured documents adhering to a well-
defined, but representationally complex, schema. There-
fore, we consider the problem of detecting change only
within the context of semi-structured documents. To detect
these changes, we compare two versions of the same doc-
ument. The comparison utilizes any characteristics, rules
and relationships existing in the documents, as described
by the schema. We use a graph representation to describe
the schema, and view documents as instances of this graph.
Since a document contains data reflecting part of the schema
(for example through tags), we use it as an indication of
schema changes.

The rest of this paper is organized as follows. We begin
by briefly summarizing some of the traditional change de-
tection algorithms. In Section 3, we describe the character-
istics of scientific documents, with an emphasis on genomic
databases, and discuss how we formally represent them.

Section 4, presents our approach to data change detection,
including a description of the set of possible data changes.
Section 5 presents the set of possible schema changes and
our approach to detecting them. We conclude with an out-
line of future steps in our on-going project in Section 7.

2. Related Work

There have been several papers which detect data
changes by comparing two versions of the same document.
Initial work in this area focussed on changes in unstructured
documents. Myers et al. [12, 18] detect changes between
strings using the longest common subsequence (LCS) [11]
algorithm, and consider only insertion and deletion opera-
tions. Wagner et al. [16] use insertion, deletion and update
operations to find the best sequence of operations that can
transform one string into another.

More recently, there have been several approaches to de-
tecting data changes in semi-structured documents. These
approaches differ primarily in how they view the underly-
ing documents. Ball et al. [9, 10] view semi-structured doc-
uments as containing sequence of sentences and “sentence-
breaking” markups. A sentence is a non-recursive set
of words and non-sentence-breaking markups. Sentence-
breaking markups separate sentences from each other and
from collections of sentences. In comparing two documents,
the LCS algorithm is used to determine the total number of
matched words and markups within these sentences com-
pared to the total length of the two sentences. With this ap-
proach, a sentence may need to be compared with all sen-
tences in the other document. Even though changes to data
can be detected, changes to the schema cannot be.

Alternatively, Chawathe et al. [7] and Zhang et al. [15,
17, 19] view semi-structured documents as trees. Thus,
the problem of change detection has been transformed to
the problem of finding differences between trees. For any
pair of leaf nodes, they either match or not, as determined
by LCS. Two internal nodes strictly match if all their chil-
dren match, and partially match if at least some children
match. To detect data changes, the two documents are first
converted into their corresponding trees, then the matching
nodes are identified. Once this has been done, all of the
sequences of operations (insert, delete, update, move) that
convert the old tree to the new one are identified, usually re-
sulting in several options. The sequence that best represents
the transformation is the one with the lowest total cost, based
on the cost assigned to each operation. This approach may
be expensive since each node needs to be compared to all
nodes in the other tree, and may match many of them, re-
sulting in a large set of valid transformations.

In addition, given the nature of scientific documents as
discussed in the next section, we need to be able to repre-
sent not only the data within semi-structured documents, but

also the schema used to generate the documents. The repre-
sentation should allow one to perform the task of detecting
changes to data and schema. For the previous tree structure,
even though the data within the document and their relation-
ships can be represented in the tree, it cannot express all the
possible schema and rules used for the document. It can only
partially express that part of the schema that the document is
using. For example, the PDB document of Figure 1 does not
have

���������	��
��
, which is an optional data item fol-

lowing �� �	��
��
. Using the tree structure, this type of

schema information is not represented.

Chawathe et al. [1, 4, 5] and Nestorov et al. [14, 13]
use edge labeled graphs to represent semi-structured docu-
ments. Although the use of edge labeled graphs can help
in querying data within semi-structured documents, deter-
mining and assigning the labels to the edges requires sig-
nificant manual effort. One needs to manually evaluate the
content of a semi-structured document (e.g. an HTML page
containing restaurant reviews as used in [5]) prior to con-
structing the edge labeled graph. In the restaurant exam-
ple used in [5], the word “restaurant” does not even exist
in some of the paragraphs within the HTML document. In-
stead, it has been manually decided that a marker, (� P �) in
the HTML document would always indicate the beginning
of a restaurant. Thus, a change to the structure of the HTML
document would require manual re-evaluation of the doc-
ument prior to necessary modification of the edge labeled
graph representation. Furthermore, other important prop-
erties, such as object ordering, cannot be expressed using
the edge labeled graph representation. For example, the au-
thor may have re-ordered the restaurants, from top to bottom
based on his/her preferences. Alternatively, the author may
replace � P � with � OL � (ordered list elements) to denote
the ordering of data items is significant. Using the current
labeled graph representation, such properties would be lost.
In scientific documents, properties such as ordering may be
very significant.

Our approach to detecting change does not require trans-
forming one representation to match another, or finding the
sequence of operations with minimum cost. Rather, we per-
form the tasks of node matching and comparison during the
parsing of the documents. Furthermore, none of the ap-
proaches previously mentioned detect changes to the un-
derlying document schema. While our examples focus on
genomic scientific-documents, our approach is also appli-
cable to other domains, such as HTML and XML docu-
ments, with some level of modification. The reasons for
our focus on scientific documents are: (1) there are frequent
schema changes in scientific environment, which present a
more challenging problem, and (2) we feel that the schema
used within scientific documents resides somewhere be-
tween HTML and XML. While in HTML the grammar can
be very relaxed, for example, a markup can appear almost

anywhere within the body of an HTML document. In XML
an extremely rigid DTD may be defined. Portions of a
schema for scientific documents can be very relaxed while
others are very rigid. While not all semi-structured docu-
ments contain a restrictive section, our algorithm makes use
of this information, where it exists, to identify a greater num-
ber of changes with less effort, as outlined in Section 5.3.
Scientific documents represent a good cross-section of semi-
structured documents because of the interesting mix of flex-
ible and restrictive areas.

3. Semi-structured scientific documents

As described in Section 2, there are several ways one can
view and model a semi-structured document. Our view is
based on experience with scientific documents in general,
and genomic documents in particular. To provide a consis-
tent and concrete framework for presenting our representa-
tion, we use a single example, the Protein Data Bank (PDB)
[3] data source shown in Figure 1. We present the charac-
teristics and rules of the schema below.

Figure 1. Sample of a PDB document

A schema for semi-structured scientific documents, � ,
consist of a set of data objects, � , and a set of constraints,
 , between the data objects. A data object, � , is com-
prised of an identifier, ���������! "�$# , and a value, %'&)(* "�$# . Val-
ues are optional. For example, in Figure 1, data object �,+
with ���������! "�,+-#/.102��3 � � has no value (i.e. %'&)(* "�,+4#/.
��52(6() because there is no data associated with it, while ob-
ject �,7 , with ���������! "�,78#9.:0<;
=��>��?�?@ , has a value
of YES. In some cases, ordering among objects is signifi-
cant, in others it is not. For example, the compound de-
scription (�� �	��
��

) must come after the title and be-
fore the source. However, it doesn’t matter if its molecule

type comes before the chain-identifier information or after
it. Each schema object is contained in exactly one of the fol-
lowing sets:

1. Mandatory objects. These objects must exist in a doc-
ument. For example, in a valid PDB document there
must be a data object � + with ���������! "� + #'. >����������

.

2. Optional objects. These objects may or may not
exist in a valid document. For example, � + where
�4�)�����! "� + #�. �A���	����BDC

does not have to exist for
a PDB document to be valid.

3. Conditional objects. Each of these objects can only
exist if another object exists. For example, in a PDB
document, a molecule type (SYNTHETIC) exists if and
only if there is a corresponding compound description
(SOURCE). A conditional object can be either manda-
tory or optional. For a conditional object to be manda-
tory, the object it conditionally exists upon must be a
mandatory object.

We feel that a model for scientific documents should
posses two properties; the capability to represent both the
data within the documents and the schema to generate the
documents, and should support change detection for both
data and schema. This does not mean that we ignore other
characteristics, such as support for querying data within the
documents, as in [5]. As briefly discussed later, our repre-
sentation could be converted into other representations, in-
cluding labeled-edge graphs or trees.

In order to have the previous properties, we view a
schema of scientific documents as simply a directed graph,
called schema graph. A schema graph is a natural and di-
rect translation of the grammar for scientific documents into
a graph. Consequently, we view a scientific document as an
instance of its schema graph. Nodes in the graph consists of
a label and, possibly, a value. When necessary, the schema
graph can be converted into edge labeled graph by simply
removing the label from every node and place it on the cor-
responding edge. Formally, we define a schema graph S as
consisting of:

E Nodes, � .
Nodes correspond to the schema objects previously de-
fined. There are three different types of nodes: regular,
optional and stopping nodes.

– Regular nodes, �<F , must have an associated iden-
tifier. If an identifier is not explicitly specified
in a document, a generated one will be supplied.
Values are optional. For example, the identifier
SOURCE does not have a value while its chil-
dren, such as SYNTHETIC, do. We use �<F+ and

�4���G���! H� F+ # to denote a regular node � and its iden-
tifier respectively. A regular node is represented
by a circle on the schema graph.

– Optional nodes, �<I , do not have identifiers or val-
ues. An optional node must have at least two chil-
dren. For a given document, exactly one of the
children nodes of an optional node must be se-
lected. On a schema graph, an optional node is
represented by a triangle.

– Stopping nodes, �<J , do not have identifiers or
values. These nodes function as a no-op and
are needed as a termination point for repeatable
nodes. Usually, one of the children of an optional
node is a stopping node. A stopping node is rep-
resented by a circle with the letter F in it on the
schema graph.

E Directed edges, � .
A directed edge connects two nodes, � + and �<7 , where
the edge begins at � + , the parent, and ends at �<7 , the
child, and � +GK �<79LNM4�<F K �<I K �<JPO . For any � + whose
immediate parent �<7 is not an optional node, whenever
� 7 exists in a document, �<+ must also exist. Such a re-
lationship is denoted by �<+2QR� 7 . There are two types
of directed edges; ordered and unordered edges.

– Ordered directed-edges, ��I , indicate that the or-
dering of the children from left to right is signifi-
cant and must be preserved. These edges are rep-
resented by a solid line on the schema graph.

– Unordered directed-edges, ��S , indicate that the
ordering of the children from left to right is not
critical. These edges are represented by dashed
lines on the schema graph.

Thus a schema graph is a tuple T
 K �VU , where

is a
set of nodes and

�
is a set of directed edges. Figure 2

depicts an example of a simple schema with the follow-

W

1

2 3

4 5 6 7

11 12

9 10

13 14
W

W

8

Figure 2. An example of a graph representa-
tion of a simple schema

ing properties and rules. �PXZY[�PX]\ are regular nodes and
� X K �_^ K �_` K � \ K �_a K �_b K � X]c K � X ` K � X]\ are required. �_^ must

appear before �_` and, if present, (�_d K � X ^) and �_e must ap-
pear between � ^ and � ` . (� b)K �PX `fK �PXg\) and �PX]c may appear
in any order after � ` . (� d8K �PX ^) and �PX�X can exist multiple
times with different values.

We represent a semi-structured document by mapping it
to an instance of the schema graph. The resulting document
graph represents a subset of the schema graph, since op-
tional rules and properties specified in the schema may not
be directly reflected in the document. Figure 3 (a) shows
a document graph conforming to the schema depicted by
Figure 2. Because a document graph unrolls the loops in a
schema graph, it is represented as a tree instead of a gen-
eral graph structure. Figure 3 (b) depicts the tree schema,
obtained by mapping the schema graph in Figure 2 to the
document graph in Figure 3 (a). As can be seen from Fig-

9

13 14

7

1

2 3

4 5 10 9

13 14

6

1211

11

6

12 7

(a) (b)

1

2 3

4 5 6

12

6

12

11

11

h

10

h

Figure 3. The subset graph and tree for a doc-
ument

ure 3 (a), a document graph, denoted by �-i , consists of the
following.

E Nodes, � . �9L9M��<F K �<I K �<JPO .
E Edges, � . �ALjM$��I K � S O .

4. Changes to data

To detect data changes, we use the schema to guide the
comparison between different versions of the document.
This requires extending the current parser to read the orig-
inal document and store it internally. This effectively com-
bines the schema graph and the original document graph to
produce a ”value-added” schema graph. Then the new doc-
ument is read using the value-added schema, with the data
values being compared during the parsing. This allows us
to detect and evaluate changes while the document is being

loaded. Before we discuss detecting data changes in Sec-
tion 4.2, we present our approach to producing the value-
added schema and describe the types of changes we con-
sider. Since a document graph is an instance of a schema
graph, mapping the document graph to the schema graph is
straightforward:

1. Parse the original document using the schema graph.
For every object within the document, mark the corre-
sponding node in the schema graph. For every value in
the document, copy it to the corresponding node.

2. Extend optional nodes as necessary to handle loops.

To illustrate, suppose we would like to obtain the value
added schema, � +ilk , where � + is the schema given in Fig-
ure 2 and �-ilk is the document graph shown in Figure 3 (a).
Figure 4 presents � +ilk diagrammatically, with shaded circles
and solid lines corresponding to the document’s nodes and
edges.

1

2 3

4 5
W

6 7

12

W
6 7

12

W
11

W
11

W
6 7

12

val

val val

val val

val val

val

val

val

val

val
10

val

W
8

W
11

9

13 14

val

valval

Figure 4. A schema having the knowledge of
the content of a document

4.1. Types of changes to data

We define an output of a data change to be a tuple
TH� K � KGm'K % K 0n�4o U , where � , � , m , and % are the type of data
change, corresponding node identifier, parent node of � , and
value of � , respectively. 0p�4o is a set of nodes, and their
values, that that uniquely identify � ’s position in the value-
added schema graph. This is necessary to differentiate re-
peatable nodes. Both % and 0n��o are optional.

Next, we briefly describe the types of data changes we
consider in our approach and the output each generates:

E Update Value: 5 m �q H%r&�(] H�<+s#s# occurs when an update
is made to the value of a node � + . This change re-
quires the same node to appear in both versions, and
� + LtM��<FuO .
Output for 5 m �v w%'&)(* w� + #�#
is Tx5 m �)&y�,� K � +"KGmvzq{*K %'&)(* w� + # K 0p�4o U and %r&�(] H� + # is re-
quired.

E Insert node: �]�|�u w� + # occurs when a node � + does not
exist in the original document but exists in the newer
one.
Output for �*�|�f H�<+s# is TH�*�|�y��}u� K �<+ K�m z {"K %r&�(] H�<+s# K 0n�4o U
and %r&�(] H�<+4# is required.

E Delete node: ���y(* w�<+-# occurs when a child of an op-
tional node �<+ exists in the original document but not in
the newer one. This also indicates that an � J has been
selected to replace � + in the newer version. If � + is a
mandatory node, this change would indicate a schema
change as discussed in the following section.
Output for �)�!(] H� + # is T��)�!(6���,� K � +�KGmvzq{*K 0n�4o U .

E Reorder nodes: }p�y�-}p����}r w�<+-# occurs when unordered
nodes have been reordered. If ordered nodes changed
their position, this change would represent a schema
change. In detecting }p�y�-}p����}r w�<+-# , siblings of �<+ need
to be evaluated.
Output for }p�y�-}p����}r w�<+-# is TH}p�!�-}p�)��} K �<+ K�m z {*K 0p�4o U and
0n��o is required to show the new ordering.

E Move node: ~t�-%'�f H� + # occurs when a node � + is relo-
cated upward or downward on the graph. This is only
possible when the node is a child of an optional node.
Output for ~t�-%r�u w�<+y# is Tx~t�-%'� K �<+ KGm z {*K 0n�4o U .

4.2. Detecting changes to data

Before discussing our approach to detecting changes, we
first clarify what it means for two nodes to match. Two
nodes match if:

1. the identifiers match, and

2. the values are relatively equal, where this implies they
match under the LCS algorithm.

To detect data changes within a document, the value-
added schema can be used to parse the document and re-
turn the updates. The following pseudo-code provides a
high level overview of the algorithm we use to detect data
changes. The remainder of this section describes, in detail,
the various cases handled by this algorithm.

0���� +if�k /* value added schema = schema + old doc. */
� ���8�7 /* new document */
While traversing 0 , parse

�
using 0

for each �,+_L �
find �,7 , the corresponding node in 0
if �,7 is an ordered node then

find 5 m �v "� + # against the corresponding marked �,7
if � + is an unordered node then

find 5 m �v "� + # K }p�y�-}p����}r "� + # against �,7 and its sibling
if �,+ is a non-repeatable, optional node then

find �*�|�f s# K ���y(] s# or 5 m �q s# of child node of
�,+ against the child nodes of � 7

if �,+ is a repeatable, optional node then
find ���!(] �# K �*�|�f s# K ~t�-%'�f s# and/or 5 m �q s# of subtree
sub-rooted at �,+ against the corresponding subtree
sub-rooted at � 7

Ordered nodes
Detecting changes in ordered nodes is straightforward since
they must occur in a specified sequence. Let �8�7 denote the�

th version of document � . Given � + K �8�7 K �8�7 (
� ��(), to de-

tect changes to ordered nodes in �8�7 :

Traverse � +if�k while parsing �8�7
For every ordered node �<��L�� +if�k and its corresponding

node �<�9Lj�8�7
If val(�<�) does not match val(�<�),

then return 5 m �v H%r&�(] w� � #s#

Unordered nodes
Given � + K � �7 K � �7 (

� ��(), to detect changes to unordered
nodes in �u�7 :

Traverse � +if�k while parsing �8�7 .
Foreach visited, mandatory unordered node �<� on � +if�k ,

Fetch the corresponding object, � � , in �8�7 .
Fetch �<��� , the children of �<� .
Compare each of �<� ’s children with �<��� using only

the identifier to find the corresponding node.
Record the order of the node and the object.
Compare the values of the matching node.
If the orders are different, return }p�!�-}p���G}r H� � # .
If the values of matching nodes are different,

add an 5 m �q H� � # .

Non-repeatable, optional nodes
Given a schema graph � + , a non-repeatable optional node � �
is a node such that � � ’s ancestor � � LD�<I (i.e. it is optional)
and �v�<���r�<� is a descendent of � � and ��� an edge from
� � to � � (i.e. it is not in a loop). Given � +�K �8�7 K �u�7 � ��(]# , to
detect changes to non-repeatable, optional nodes:

Traverse � +if�k and parse �u�7 .

For each visited, non-repeatable, optional node � �
Identify the corresponding optional node, � � in �8�7 .
If �4���G���! H�<�q#'.[�4�)�����! w�<��# and %r&�(] H�<�p#��.�%r&�(] w�<��# then

return 5 m �v w�<��# .
If �4���G���! H�<�q#��.[�4�)�����! w�<��# then

return ���y(] H� � # K �]�|�u w� � # .
If � � .���5/(6(then return ���y(] H� � # .
If � � .���5/(6(and � � �.���5/(6(then return �*�|�f H� � # .

Repeatable, optional nodes
Given a schema graph � + , a non-repeatable optional node,
� � , is a node such that � � ’s ancestor � � L��<I and �f�<�	�!�<�
is a descendent of � � and � an edge from � � to � � . For ex-
ample, Figure 5 (a) depicts an � + showing an optional node
having a repeatable child � d . Figure 5 (b) depicts a portion
of � +if�k with repeated nodes, and Figure 5 (c) depicts the tree

representation of �8�7 . To detect changes to repeatable nodes,
we use a bucket as temporary storage during the change de-
tection process: os�7 is associated with �8�7 . In addition, we also
use a marker to mark the point of the last comparison within
a set of repeatable nodes in � +if�k .

�
6 7

(a)

12 12

�
6 7

12

�
6 7

12

val=a

val=y

val=b

val=v

val=x

�
6 7

(b)

val=x
6

12

6

12

val=a’

val=z

val=c

6

12

val=y

val=b’

�
(c)

Figure 5. Detecting changes to repeatable
nodes

Given � + K �8�7 K �8�7 (
� ��(), to detect changes to repeatable,

optional nodes:

Set the marker to be at the first node of every set of
repeatable nodes in � +if�k .
Traverse � +if�k and parse �8�7 .
For each node � � in �8�7 , compare each � � child, � � � ,
with the child, �<�s� , of the corresponding �<� in � +i �k
and �<��� is the marked node.

If �<� � .�� ��� , return 5 m �v w�<� � # .

If �<� � �.[� �s�
Compare � � � with the rest of repeatable nodes

of �<� sequentially.
If a match is found, return 5 m �q H� � �y# ,
~��-%r�u w� � ��# , remove � � � ’s matching from � +i!�k ,
and mark the repeatable node immediately
following � � � ’s matching in � +if�k .

If a match is not found, append �<� � to os�7 .

return ���!(] w�<�q# for each �<� remaining of �<� and return
�]�|�u w�<��# from each �<��Ljos�7 .

4.3. Cost

In this section, we discuss the complexity of the previous
algorithms and the overall cost of detecting changes to data
within a document. We consider the worst case scenario for
upper-bound cost of our algorithm.

For the first three cases, the algorithm’s cost is incurred
during the parsing of the document. Thus, its order of com-
plexity is linear in the number of objects in the document,
as is the number of ordered nodes. It is linear since the
maximum number of comparisons that must be performed
is equal to the number of ordered nodes. In the case of un-
ordered nodes, a given unordered node in �u�7 must first be
compared with a given set of related unordered nodes in � +if�k .
Since this is also performed during parsing of the document,
the cost of detecting changes for unordered nodes is also
linear. This observation also applies to the algorithm for
nonrepeatable-optional nodes.

However, it is not the case for repeatable-optional nodes,
where significant cost may be incurred. To better understand
and evaluate the complexity of this case, we use two sets of
linked lists consisting of the corresponding sets of repeat-
able nodes, where one is in � +i!�k and the other is in �8�7 . For

the purpose of simplicity, let suppose that there was only one
set of repeatable nodes in a document. In actuality, multiple
sets of repeatable nodes is normal occurrence. An example
is depicted by Figure 6.

In Figure 6(a), the left and the right lists represent the
set of repeatable nodes in � +if�k and the corresponding set of

nodes in �u�7 , respectively. A box (e.g., “a”) in the the list rep-
resents a repeatable node with or without its children (chil-
dren may be necessary to help the comparison). The “*”
represents the marker identifying which node in

�
the com-

parison should start with. Each node in } is compared with
the list to its left starting with the marked node. Any pair of
matching nodes is removed from both lists, e.g., node “b” of
Figure 6(b). The marker is set to the following node “c” and
the next node in } , “x”, is compared with the left list start-
ing from “c” and circled back to the beginning of the list,

c

d

e

f

g

c

e

f

y

g

c

d

e

f

g

x

c

e

f

y

g

a

b

c

d

e

f

g

b

x

c

e

f

y

g

s i

d k
j

d l
j

a

*
x

b l
j

(b) (c)(a)

a

*
*

R r R rRr

Figure 6. Comparing two sets of repeatable
nodes

i.e., starting from “c” until “a”. Since none of the remaining
nodes in

�
matches “x”, it is removed and stored in os�7 as can

be seen in Figure 6(c). The comparison process is repeated
until all nodes in } have been evaluated.

In the worst case scenario, the complexity of the algo-
rithm is �¡ ?~ , where � and ~ are the number of repeatable
nodes in

�
and } , respectively. Let ¢ denote the total num-

ber of ordered nodes, unordered nodes and nonrepeatable
optional nodes in the new document. Let

�
and

�
denote

the number of repeatable-optional nodes in the new docu-
ment and the average number of repeatable nodes within one
repeatable-optional node, respectively. Then, the total com-
parisons that need to be performed is ¢ +

� � ^ . With
�

normally relatively small, in the worst case, the overall com-
plexity is �V
 ^ # , where

is the number of nodes in the

largest set of repeatable nodes in the document. Note that

is not the total number of nodes in the documents.
This can only occur when all of the corresponding re-

peatable nodes in the old version of the document have been
deleted and replaced with a completely new set of nodes in
the new document. For scientific documents, especially ge-
nomic documents, this scenario is very infrequent. Further-
more, relatively large portions of the new document usu-
ally maintain the same ordering as that of the older ver-
sion. (Here, ordering refers to the location of a specified
repeatable node with respect to two other repeatable nodes
immediately preceding and following it). This is the rea-
son for employing the marker in our algorithm. We are at-
tempting, as much as possible, to exploit such characteristics
so that the algorithm typically performs significantly better
than �£ 2~ . In practice, the algorithm is expected to perform
�V w��¤�~9# .

5. Changes to schema

To detect changes to schema, we need the old schema
graph and a document that conforms to the new schema. Our
approach is based on the observation that some, if not all, of
the schema changes will be reflected in future documents.

In particular, when the schema changes, some of the docu-
ments will fail to conform to the existing schema. As a re-
sult, changes that would normally be considered errors, such
as an unrecognized identifier, are treated as schema modifi-
cations instead. In order to obtain the best reflection possible
of the scope of schema changes, parsing should continue as
much as possible after a schema change has been identified.

5.1. Types of schema changes

We define the output of a schema change to be a tuple
TG��� K ��� K � mrK 0n��o K �� U , where �G� , ��� , � m , and % are the type
of schema change, corresponding node identifier in schema
graph, and parent node of �G� respectively. 0n��o is a set of
nodes that uniquely identify �G� , and �� is the ordering of
�G� child-nodes from left to right as reflected in the docu-
ment. In general, 0p�4o and �� are optional.

Before we describe our approach to detecting schema
changes, we present the different categories we consider,
and the output for each operation:

1. Reordering a node. For a given node � + , if the or-
dering of its children is significant, a reorder indicates
it has changed. For example, the ordering between
COMPND and SOURCE may be switched. We use
}p�y�-}p����}p0� �# to denote this operation.
Output for }p�!�-}p�)��}p0� �# is
TG�!¥l¦r�G~�&,}p�!�-}p���G} K �<+ KGm z {*K �� U and �� is required.

2. Inserting a new node. An insert is considered to
have taken place when an unrecognized identifier, � + ,
is found. We use �*�|�!0/ s# to denote this operation.
Output for �*�|�!0/ s# is TG�!¥l¦n��~t&y�*�|�y��}u� K �<+ KGm z {*K 0n�4o U .

3. Deleting a node. For a regular node �<+ , a deletion is in-
dicated by a document not containing a required child
node. However, this may also indicate that it has been
converted into an optional node. These options can be
differentiated by evaluating a set of documents. Simi-
larly, the deletion of an optional node requires an anal-
ysis of multiple documents. Our approach to this anal-
ysis is outlined in Section 5.3. We use ���y(g0/ s# to denote
a deletion of a node.
Output for ���!(60� �# is TG�!¥l¦n��~t&����!(6�G�,� K � +-KGmvzq{*K 0n�4o U .

4. Renaming a node. If an unrecognized identifier
matches a previously existing child of the same parent
� + , we consider that to be a rename of the existing iden-
tifier. We use }p���|&,~��y0� s# to denote an update of a node
identifier on the schema.
Output for }p�G�|&y~t�!0� �# is
TG�!¥l¦r�G~�&,}p���|&y~t� K �<+ K�m z {]K 0n��o U .

5. Adding/deleting a repeatable edge. This schema
change is only applicable to a regular node whose an-

cestor is an optional node. The addition of a repeat-
able edge can be detected by evaluating a document
where a node which previously never appeared multi-
ple times now does. The appearance of multiple nodes
that were previously mutually exclusive may also in-
dicate the addition of a repeatable edge. For exam-
ple, given the schema depicted by Figure 2 the appear-
ance of �_e K �_d K � X ^ in a new document would signal
the insertion of a repeatable edge on �_e . Detecting the
removal of a repeatable edge is a more difficult task,
and is described in section 5.3. We use }p� m �!&,�,0� s# and
�|�-��}p� m �!&,�,0� s# to denote an addition and a deletion of
a repeatable edge respectively.
Output of }p� m �!&,�,0� s#
is TG�!¥l¦n��~t&y}p� m �!&y� K �<+ K�m z { U , where �<+ is the node that
was previously non-repeatable and has appeared mul-
tiple times in the document.

5.2. Detecting changes to schema

For a node in the schema graph and an object in the
document to exactly match, their identifiers must be identi-
cal. Two nodes having different identifiers partially match
if more than a specified percentage of their children match,
based on a matching among the children in which order is
not considered. The number of children required to match
can be adjusted depending on the level of accuracy desired.

For the remainder of this section, we assume that the doc-
ument we are parsing conforms to a newer version of the
schema than the parser. We first present the general algo-
rithm for detecting schema changes, then describe in de-
tail the approach for each type of nodes. Section 5.3 dis-
cusses how we infer complex schema changes, taking into
consideration the possibility of errors, by analyzing schema
changes from a collection of incomplete document compar-
isons.

This algorithm traverses the schema graph identifying
schema changes while parsing a document:

0�� root node of the schema graph� � the beginning or root object of the document
While 0��.	§ and

� �.¨§ do
�©��Y m � m � #
�P��Y m � m G0�#
if � is a regular node then

detect schema changes between � ’s children
and � ’s children
for any matching � ’s children, �<i , with the
corressponding children, �<� of � do

m 52�!¦� w� i$K � # and m 5/�!¦' H�<� K 0�#
if � is an optional node then

detect schema changes between � ’s children � i
and � ’s children
if �<i matches a child-node, � � , of � then

m 52�!¦' H�<i K � # and m 5/�y¦� w� � K 0�#
if � i is a repeatable node then
� i�ª � location in the document immediately
following � i
m 52�!¦' H� i�ªpK � # and m 52�!¦� w�<� K 0�#

0 and
�

are lists of nodes. m 52�!¦' H« K ¢¬# and m � m G¢¬# have the
standard FIFO queue semantics.

When detecting schema changes, this algorithm relies
heavily on the original schema. The more rigid the schema
(i.e. the fewer optional nodes), the more changes that can
be detected. Thus while this approach will work for semi-
structured documents in general, it is most useful when ap-
plied to documents that are well constrained - such as sci-
entific documents. For example, in PDB documents, the be-
ginning and ending of a major identifier, such as SOURCE
is easily identified by its tag along the left column. Addi-
tionally, characters such as M :;., O and ”tab” can be used to
identify the beginning/ending of a data object or grouping
of data objects.

Children of a regular node
Given node � � from schema graph � + and the matching ob-
ject � � within a document � � where both � � and � � are reg-
ular nodes, to detect schema changes to children of � � :

Traverse the sub-graph rooted at � � creating a list,
 � , of � � ’s children in order from left-to-right.

Identify all children of � � , � , by parsing � � starting
from � � until an identifier that matches one of the � � ’s
siblings is encountered.

Sequentially compare � and � to detect changes.
For every � � Lj � that strictly matches an identifier,� � L� �

If order of � � ’s children on � + is significant, then
}p�!�-}p�)��}p0� w� � # is returned.

For every unmatched identifier in � � Lj � and � � L� �
If �<� partially matches �<� , }p���|&y~t�!0� w�<�# is returned.
For every unmatched �<� , �*�|�y0� H�<�r# is returned.
For every unmatched �<� , ���!(60� w�<��# is returned.

Children of an optional node
Given an optional node, � � , on schema graph � + , and
the matching object, � � , within a document �8� , to detect
schema changes to children of � � :

Traverse the sub-graph rooted at � � identifying all children
of � � , � .
Fetch the next identifier, �<� , immediately following � �
in � � .

If �<� matches one of � � ’s sibling nodes,
� � ’s children is a stopping node and no schema change
is detected.

If � � matches one of � � ’s children, � �
Fetch the next identifier from � � .
If it matches one of � � ’s children, �<� is repeatable.
If �<� is non-repeatable in � + and �<� is a repeatable,

then return }p� m �!&y�,0� w�<�p# .
If �<� does not match any of � � ’s children,

then return �*�|�!0/ H� � # .
If � � is a repeatable node that has been changed

into a non-repeatable node, the approach described
in Section 5.3 is used.

5.3. Inferring schema changes

Because a document is only one instance of its schema, it
may not accurately reflect all changes to that schema. Thus,
multiple documents may need to be considered at once to
identify the new schema. To detect changes spanning mul-
tiple documents, we envision applying data mining tech-
niques to a large collection of comparison results. Mining
a large collection of schema changes addresses these prob-
lems:

1. Determining when to delete a child of an optional node.

2. Identifying unintended errors.

The larger the number of documents considered, the greater
our confidence in the resulting patterns. For example, as-
sume that we have � documents that conform to schema
� +¯® X . By comparing these documents against the previous
schema, � + , we identify a set of schema changes for each
document �¦ where �¦�.NM8¥,¦ if°,K ¥l¦ is±fKy²H²H²HK ¥l¦ iy³ O . We can
then use statistical analysis in the following ways:

1. If � � is the child of an optional node being considered
for deletion and if �¦ indicates that data objects corre-
sponding to � � do not appear in any of the documents,
we may deduce with a level of confidence proportional
to n that � � has been deleted.

2. An error may be reflected by an �*�|�!0/ s# K ���y(60� s# or
5 m �v �# on a node. In �¦ , an unintended schema change
is likely to take place in only one or two documents.
Schema changes occurring only in a very small per-
centage of documents are usually errors and should
be ignored. However, because this could ignore valid
schema changes, we assume that the changes are rela-
tively minor, and do not ignore infrequent but signifi-
cant schema changes.

More detail discussion on our schema analysis and its
complexity can be found in [2]. We believe mining schema
changes is a feasible approach to identifying complex mod-
ifications. However, human intervention may be required to

resolve some conflicts. The main objective of this effort is
to automatically detect as many schema changes as possible
so manual reconstruction of the new schema from scratch is
no longer necessary.

6. Implementation within DataFoundry

We are currently implementing our approach within the
context of the DataFoundry [8] project at Lawrence Liver-
more National Laboratory (LLNL). DataFoundry is a data
warehouse that integrates scientific data from several dis-
tributed, autonomous, heterogeneous information sources.
DataFoundry provides LLNL scientists with a uniform and
semantically consistent interface to a variety of data. Fig-
ure 7 provides a simplified view of the DataFoundry archi-
tecture. Wrappers extract scientific documents from the un-

. .

Scientists

Genome Ftpsite

RDBMS FlatFile Others. . .

Wrapper Wrapper Wrapper Wrapper

Internet

DataFoundryDataFoundry

Mediator

Figure 7. General Architecture for
DataFoundry

derlying information sources, such as PDB, parse them, and
pass the data to the mediator. The mediator transforms the
data into the appropriate format, and propagates it to the
warehouse. Because DataFoundry is focused on scientific
data in general, and genomic data in particular, it faces the
problems of detecting data and schema changes addressed
in this paper. Typically, genomic information sources pro-
vide their schema as a free-formatted document, requiring
manual identification of the locations and types of schema
changes made to a new revision. Once these changes are
identified, the associated wrapper is manually updated to
conform to the new schema. This has proven to be costly
and time consuming.

We have developed a module that periodically detects
and retrieves new documents from the information sources.

These documents are then passed on to the appropriate
wrappers to be parsed and entered into the warehouse. We
are currently extending these programs to utilize the value-
added schema to detect data and schema changes. At this
time, data change detection has been implemented, and
schema change detection is under development. We envi-
sion the change management architecture for DataFoundry,
shown in Figure 8,which extends the current DataFoundry
architecture by adding the schema mining, schema storage
and generator components.

. .
Scientist

Schema
Storage

Generator

Changes in Schema

Changes in Data

DataFoundry

Internet

Genome Ftpsite

Schema Mining

Wrapper

Figure 8. General Architecture for the change
management system

In this architecture, when a change is detected, the wrap-
per retrieves all newly created or modified documents from
the information source. Each extracted document is com-
pared with its older version, stored locally by the manage-
ment system. X Data changes are extracted and propa-
gated into DataFoundry while schema changes are stored.
By comparing several documents, and accumulating the
schema changes, we obtain a better view of the new schema.
The schema mining component then analyzes the collec-
tion of changes and defines a new schema. In doing so, hu-
man intervention may be required to resolve conflicts aris-
ing from incomplete or inconsistent data. The new schema
is added to the schema storage, and is used by the generator
to define a wrapper that conforms to it.

7. Conclusion

In this paper we have highlighted the importance of de-
tecting changes to both data and schema, and proposed a for-
´
In order to minimize storage requirement, only the newest version of

each document is stored. Existing compression techniques can be used to
further reduce the storage requirement

mal representation of semi-structured, scientific documents
and their schema. We have addressed the problem of detect-
ing data and schema changes by comparing the new docu-
ment, with its implicit schema information, to the older ver-
sion, represented as a value-added schema graph. We have
presented the types of data and schema changes that may
occur in scientific documents, and proposed detection algo-
rithms accordingly. Our approach avoids performing exten-
sive data matching between two versions of documents by
performing change detection during the parsing of the doc-
uments, and by using the schema to guide the process. In
order to minimize manual intervention for detecting schema
changes and modifying existing wrappers, we have pro-
posed a general purpose architecture and the necessary com-
ponents for an automated change-management system. We
are currently in the process of implementing this architec-
ture within the context of the DataFoundry project at LLNL.

8. Acknowledgments

Adam and Adiwijaya would like to acknowledge the help
and support from Lawrence Livermore National Laboratory.

A portion of this work was performed under the auspices
of the U.S. Department of Energy by University of Cali-
fornia Lawrence Livermore National Laboratory under con-
tract No. W-7405-ENG-48.

References

[1] S. Abiteboul. Querying Semi-structured Data. In Pro-
ceeding of ICDT, January 1997.

[2] Igg Adiwijaya. Detecting data and schema changes
in semi-structured scientific documents in data ware-
housing environment. In Rutgers University Ph.D.
Dissertation (Draft), 2000.

[3] Protein Data Bank. Protein Data Bank Contents Guide:
Atomic Coordinate Entry Format. In published at
http://www.pdb.bnl.gov, 1999.

[4] P. Buneman. Semistructured Data. In ACM PODS,
1997.

[5] S. Chawathe, S. Abiteboul, and J. Widom. Represent-
ing and Querying Changes in Semistructured Data. In
ICDE, 1998.

[6] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ire-
land, Y. Papakonstantinou, J. Ullman, and J. Widom.
The TSIMMIS Project: Integration of Heterogenous
Information Sources. In IPSJ Conference, 1994.

[7] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change Detection in Hierarchically Struc-
tured Information. In Proceedings of the ACM SIG-
MOD Conference, June 1996.

[8] T. Critchlow, K. Fidelis, R. Musick M. Ganesh, and
T. Slezak. DataFoundry: Information Management for
Scientific Data. 4(1):52–57, March 2000.

[9] F. Douglis and T. Ball. Tracking and Viewing Changes
on the Web. In 1996 USENIX Technical Conference,
1996.

[10] F. Douglis, T. Ball, and Y. Chen. WebGUIDE: Query-
ing and Navigating Changes in Web Repositories. In
Fifth International World Wide Web Conference, May
1996.

[11] D.S. Hirschberg. Algorithms for the longest common
subsequence problem. In Journal of the ACM, pages
664–675, October 1977.

[12] E. Myers. An O(ND) difference algorithm and its vari-
ations. In Algorithmica, volume 1, pages 251–266,
1986.

[13] S. Nestorov, S. Abiteboul, and R. Motwani. Extracting
Schema from Semistructured Dat. In Proceedings of
1998 ACM International Conference On Management
of Data (SIGMOD’98), June 1998.

[14] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe.
Representative Objects: Concise Representations of
Semistructured, Hierarchical Data. In Proceedings of
the 13th International Conference on Data Engineer-
ing (ICDE’97), 1997.

[15] D. Sasha and K. Zhang. Fast algorithms for unit cost
editing distance between trees. In Journal of Algo-
rithms, volume 11, 1990.

[16] R. Wagner. On the complexity of the extended string-
to-string correction problem. In Seventh ACM Sympo-
sium on the Theory of Computation, 1975.

[17] J. Wang, K. Zhang, K. Jeong, and D. Shasha. A System
for Approximate Tree Matching. In IEEE Transac-
tion On Knowledge and Data Engineering, volume 6,
pages 559–570, August 1994.

[18] S. Wu, U. Manber, and E. Myers. An O(NP) sequence
comparison algorithm. In Information Processing Let-
ters, volume 35, pages 317–323, September 1990.

[19] K. Zhang, J. Wang, and D. Sasha. On the editing dis-
tance between undirected acyclic graphs. In Interna-
tional Journal of Foundations of Computer Science,
1995.

